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We have investigated the phase transition pressures and associated volume collapses in the calcium chalcogenide mixed 
crystals using two models. A modified interaction potential model (model-I) has been developed by including covalency 
effect in interaction potential model (model-II) and the results from model-I are found to be better and they are in good 
agreement with experiment.  The study has been extended to mixed crystals and the effect of composition on transition 
pressure, volume change, Cauchy violation and elastic anisotropy are investigated.   To further enhance the reliability of 
present model and to judge the mechanical stability of present materials, elastic combinations, elastic wave velocity and 
average wave velocity are also calculated and effect of pressure on them is discussed. As the Poisson ratio is an important 
value to know the properties of compounds found in Earth's crust, we have calculated the Poisson ratio (σ) of present 
chalcogenides and they are found to be in the range of ~ (0.22-0.25). 
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1. Introduction  
 
Structural B1-B2 phase transitions in II-IV 

compounds have been studied by many investigators, but 
the light and middle AX compounds (A = Ca, Be, Mg) 
have not been systematically investigated. Among them 
IIA-VIA Calcium chalcogenides with high cation and 
anion ratio resulting in high phase transition pressures 
seem to be more challenging. The x-ray diffraction (XRD) 
reveals the first-order phase transition from the NaCl (B1) 
to CsCl (B2) [1] in these chalcogenides. To explore 
interesting features exhibited by the high pressure phase 
transition and pressure-volume relations in these CaX 
compounds, several efforts have been devoted using the 
full potential linearized  APW [2], ab initio [3], 
pseudopotential [4,5] and tight binding [6] theories. The 
behaviour of these compounds having a cubic structure of 
the rock salt type was investigated by X-ray diffraction 
measurement at room temperature upto 52 GPa [1,2,7].  

The significantly small volume collapse in CaSe and 
CaTe has been ascribed to the large disparity in their ionic 
radii among the heavy alkaline earth chalcoginides and 
hence the repulsive force between the large ions (anions) 
resist volume collapse at the phase transition in CaSe and 
CaTe as remarked by Luo et al [1]. Among these 
compounds CaS being an excellent luminescent material, 
has been considered to be an excellent host material for 
efficient cathode-ray tube phosphors [8]. Looking at the 
interesting properties of CaX, the knowledge of their 
structural stability and elastic behavior is very important 
from a device application point of view. 

In the last two decades, some theoretical and 
experimental works have yielded information on aspects 
of the structural properties [1,3 9-13] and the electronic 
properties [14–17] of CaX. First principle density 

functional theory and microscopic tight binding models as 
well as effective Hamiltonian models have been used 
successfully to address the electronic magnetic and 
structural ground state properties. On the other hand 
phenomenological lattice models [18-20] have proved very 
successful in obtaining a qualitative and quantitative 
understating with proper parameterization. Despite their 
success, the basic nature of these interatomic potentials is 
such that they are inadequate to reveal a realistic picture of 
the interaction mechanism in ionic solids. Marinelli et al 
[16] studied elastic constants and electronic structure of 
these chalcogenides with comparative study of 
performance of various Hamiltonians. Recently Slimani et 
al [17] extended their study to Calcium chalcogenide 
alloys and studied these alloys for structural properties and 
dependence of composition on bond strengthening or 
weakening effects. Wealth of data is available on 
experimental and theoretical front on CaX, but less 
attention is paid to the elastic constants and their behavior 
under pressure. So, a detailed work in structural properties 
and elastic behaviour under pressure in these 
chalcogenides is required. Looking at the interesting 
properties of CaX and the success of Slimani et al and the 
fact that the knowledge of structural stability and elastic 
property under pressure is very important, we have applied 
an effective and modified potential model to these 
chalcogenides and studied them under high pressure (~ 80 
GPa) for different compositions. 

It is seen from the current literature that three body 
potential model (TBP) used and developed by Singh and 
coworkers [18-21] has been found to be remarkably 
successful in giving the unified description of the lattice 
dynamic, static elastic, optic, dielectric and photo elastic 
properties of ionic and semi conducting crystals. In this 
TBP model, the three body interactions owe their origin to 
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the quantum mechanical foundation and also to the 
phenomenological approach [22-24] in terms of the 
transfer (or exchange) of charge between the overlapping 
electron shells of the adjacent ions in solids. This TBP 
approach [18] has been extended to include the 
Hafemeister-Flygare (HF) type [25] overlap repulsion 
operative upto the second neighbour ions for describing 
the lattice static and mechanical properties of binary ionic 
solids and alloys. Also, Tosi and coworkers [24] have 
demonstrated the significance of van der Waals (vdW) 
attraction due to the dipole-dipole (d-d) and dipole-
quadruple (d-q) interactions to describe the cohesion in 
ionic solids and they are generally ignored in the first 
principle calculations. Besides, it is noted that Motida [26] 
has incorporated the effect of covalency to reveal the 
cohesive and lattice properties of partially covalent 
crystals.  

Motivated from the above mentioned success of the 
TBP model in III-V and II-VI compound semiconductor, 
we thought it pertinent to apply a modified potential model 
for the prediction of phase transition pressures and 
associated volume collapses in CaX mixed compounds. In 
the present paper we have used two models, modified 
interaction potential model (MIPM) model-I (including 
covalency effect) and model-II (without including 
covalency effect) to study the effect of covalency on 
relative stability; phase transition pressure and elastic 
properties for B1 phase. As the present compounds are 
highly ionic and partially covalent semiconductors, it 
would be appropriate to include covalency effects in the 
potential model. Under high pressure these compounds 
transform to close packed structures. This effect is 
important in the study of structural phase transition in the 
present partially covalent compounds. The inclusion of 
covalency effects has improved the results on phase 
transition (B1-B2), elastic constants, combinations of 
elastic constants. The objective of present work is to 
investigate systematics of elasticity and thermodynamic 
properties and phase transition of calcium chalcogenide 
(CaX) mixed crystal. The chief aim of these potentials is a 
critical assessment of the performance of these two 
potentials in the study of phase transition and high 
pressure behavior of mixed CaX. The essential theory and 
method are described in the next section. The computed 
results are presented and discussed in the section 3. 

 
2. Essentials of theory and computational  
    method  
 
The natural consequence of application of pressure on 

the crystals is the compression, which in turn leads to an 
increased charge transfer (or three-body interaction 
effects) [18-21] due to the existence of the deformed (or 
exchanged) charge between the overlapping electron shells 
of the adjacent ions.  

These effects have been incorporated in the Gibbs free 
energy (G = U+PV-TS) as a function of pressure and three 
body interactions (TBI), which are the most dominant 
among the many body interactions. Here, U is the internal 
energy of the system equivalent to the lattice energy at 

temperature near zero and S is the entropy. At temperature 
T=0K and pressure (P) the 
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Where X= 1 (Phase 1=B1), 2(Phase 2=B2), and Yx= 
1.414, 1.154, for NaCl and CsCl structures respectively.  

With αm
X

 (Where X= 1 (Phase 1=B1), 2(Phase 2=B2)) 
as the Madelung constant. C and D are the overall vander 
Waal coefficients for NaCl and CsCl structure 
respectively, βij (i,j=1,2) are the Pauling coefficients 
defined as βij=1+(Zi/ni)+(Zj/nj) with Zi (Zj) and ni (nj) as 
the valence and the number of electrons of the i(j)th ion. Ze 
is the ionic charge and b (ρ) are the hardness (range) 
parameters, r is the nearest neighbour separations fm(r ) is 
the modified three body force parameter which includes 
the covalency  effect with three body interaction,  ri (rj) are 
the ionic radii of ions i (j).                                

These lattice energies consist of long range Coulomb 
energy (first term), three body interactions corresponding 
to the nearest neighbour separation r (second term), vdW 
(vander Waal) interaction (third term), energy due to the 
overlap repulsion represented by Hafemeister and Flygare 
(HF) type potential and extended up to the second 
neighbour ions (fourth, fifth and sixth terms). 

Covalency effects have been included in the second 
terms of lattice energies given by Equation (1) in three-
body interaction parameter on the lines of Motida [26]. 
Now modified three body parameter fm(r) becomes  
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The relevant expressions of fcov(r) are given in our 
earlier work [27].        

The Gibb’s free energies contain three model 
parameters [b, ρ, fm(r)], namely hardness, range and 
modified three body force parameter. The values of these 
parameters have been evaluated using the lattice energy 
and its first and second order space derivatives [19,21,27]: 
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The mixed crystals, according to the virtual crystal 
approximation (VCA) [28], are regarded as an array of 
average ions whose masses, force constants, and effective 
charges are considered to scale linearly with concentration 
(x). The measured data on lattice constants in Ba1-xSrxTe 
have shown that they vary linearly with the composition 
(x), and hence they follow Vegards law [29]:  
 

                   a (A B1-x Cx) = (1-x) a (AB) + xa (AC)    (5) 
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The values of these model parameters are the same for 
end point members. The values of these parameters for 
their mixed crystal components have been determined 
from the application of Vegards law to the corresponding 
measured data for AB and AC. It is instructive to point 
that the mixed crystals, according to the virtual crystal 
approximation, are regarded as an array of average ions 
whose masses, force constants and effective charges are 
considered to scale linearly with concentration. It is 
convenient to find the three parameters for both binary 
compounds. Furthermore, we assume that these parameters 
vary linearly with x and hence follow Vegards law [29]:  
 

b (A B1-x Cx) = (1-x) b (AB) + xb (AC)              (6) 
ρ (A B1-x Cx) = (1-x) ρ (AB) + xρ (AC)              (7) 

fm(r) (AB1-x Cx) = (1-x) fm (r) (AB) + x fm (r) (AC)     (8) 
 

2.1 Phase transition pressures 
 
As, the stable phase is associated with minimum free 

energy of the crystal, we have followed the technique of 
minimization of Gibbs free energies of real and 

hypothetical phases. We have minimized GB1 (r) and GB2 
(r’) given by Equation (1) at different pressures in order to 
obtain the interionic separations r and r’ corresponding to 
B1 and B2 phases associated with minimum energies. The 
phase transition occurs when ΔG approaches zero and 
associated pressure is phase transition pressure (Pt). Up to 
Pt the compound is stable under B1 structure while at Pt 
theoretically we can say both the phases (B1 and B2) 
coexist, after which system becomes stable under B2 
structure. At Pt these compounds undergo a (B1-B2) 
transition associated with a sudden change in volume 
showing a first order phase transition.  

 
2.2 Elastic properties 
 
The present model (MIPM) for the NaCl and CsCl 

phases contains three model parameters (b, ρ, fm(r)), using 
them the elastic constants [27] have been computed. The 
expressions of elastic constants are as follows:   
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The values of Ai, Bi, and Ci (i =1, 2) have been 
evaluated from the knowledge of b, ρ and fm(r) are given 
in our earlier work [27]:  

 
2.3 Thermo physical properties 
 
In order to assess the relative merit of the present 

potential and logarithmic potential (LP) [27], we have 
calculated the molecular force constant (f), infrared 
absorption frequency ( 0ν ), Debye temperature ( Dθ ), 
Grunneisen parameter (γ ) and ratio of volume expansion 
coefficient (αv) to specific heat (Cv) at constant volume 
which are directly derived from the lattice energy, U(r).  

The compressibility is well known to be given by  
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in terms of molecular force constants 
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With Ukk’

SR(r) as the short range nearest neighbour 
(K≠K’) part of U (r) given by the last three terms in 
Equation (1). This force constant ƒ leads to the infrared 
absorption frequency with the knowledge of the reduced 
mass (µ) of the crystals. 
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This frequency gives us the Debye temperature 
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With h and k as the Planck and Boltzman constants, 

respectively. 
The values of the Grunneisen parameter (γ ), have 

been calculated from the relation 
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We have calculated the ratio of the volume expansion 

coefficient ( vα ) to the volume to specific heat (Cv) from 
its well known expression 
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The thermal expansion coefficient (αv) can be 

calculated with the knowledge of specific heat (Cv). 
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3. Results and discussion  
 
Using these model parameters and the minimization 

technique phase transition pressures of perfect and mixed 
calcium chalcogenides have been computed. The input 
data of the crystal and calculated model parameters are 
listed in Table-1. In order to obtain the structural phase 
transition, we have followed the technique of 
minimization. By minimizing UB1 (r) and UB2 (r’) at 
different pressures we obtained the interionic separations r 
and r’ associated with minimum energies for B1 and B2 
phases, respectively. We have evaluated the corresponding 
GB1(r) and GB2 (r’) and their respective differences                 
ΔG (= GB1(r) - GB2 (r’)).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Variation of phase transition pressure with 

concentration (x) of CaX compounds, solid squares (■), 
solid circles (•) and solid triangles (▲) represent model- 

I for CaS1-xSex, CaSe1-xTex and CaS1-xTex respectively. 
The solids lines represent model-II for 

CaS1-xSex, CaSe1-xTex and CaS1-xTex respectively. 
 
 

Table 1. Input parameters and generated model 
parameters for calcium chalcogenides. 

 
Input 
Parameters 

Model Parameters Compounds 

r0 (Å) B 
(GPa) 

b(10-12 
ergs) 

ρ (Å) fm (r) 

CaS 2.84a 64a 0.321 0.295 -
0.201 

CaSe 2.96a 51a 0.873 0.385 -
0.411 

CaTe 3.17a 42a 0.279 0.389 -
0.602 

ref-a-[1] 
 

 
As the pressure is increased the value of ΔG decreases 

and approaches zero at the transition pressure. Beyond this 
pressure ΔG becomes negative as the phase B2 becomes 
stable.The calculated phase transition pressure for CaX are 

listed in Table-2 and plotted in Fig. 1. The phase transition 
pressure of CaX are dependent lineraly with concentration 
(x).  Fig.1 shows our present computed phase transition 
pressure with concentration for CaS1-xSex, CaSe1-xTex and 
CaS1-xTex respectively. The values of phase transition 
pressures of CaX mixed crytals for model-I and model-II 
at diffrent concentrations are compared with experimental 
and others data in Table-2. The first order phase transition 
involving a discontinuity in volume takes place at the 
transition pressure. Experimentally one usually studies the 
relative volume changes (-ΔV/V0) associated with the 
compressions. The discontinuity in volume (-ΔV/V0) at the 
transition pressure is obtained from the phase diagram. 
This is the characteristic of first order phase transition.  
The negative sign shows compression in crystal. The 
relative volume change of mixed CaX crystals are also 
given in Table-2 and they are plotted in Fig-2. We have 
also computed the relative volume changes V(P)/V(0) 
corresponding to the values of r and r’ at different 
pressures. It is clear from Table 2 that our calculated 
volume collapses -∆V (p)/V (0) from our modified model for 
CaS, CaSe and CaTe are 9.8%, 7.2%and 4.3% respectively 
which are close to the results reported by Cortona et al [3] 
and they are slightly better matching with available 
experimental results [1] than Cortona et. al. The –ve sign 
shows the compression in crystal. The values of model-I 
and model-II  of end point members are compared with 
experimental and other theoretical data. It is clear from 
Table-2 and Fig-2 that our values of model-I are better 
matching with experimental values than other theoretical 
values though the diffrence is small but improvement is 
towards accuracy. The values of volume collapses of CaX 
mixed crystals at diffrent concentrations are compared 
with pseudoexperimental data (calculated by applying 
Vegard’s law to experimental values). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Variation of volume collapse with concentration 
of CaX compounds solid squares represents model- I for 
CaS1-xSex, CaSe1-xTex and CaS1-xTex respectively. The 
solid lines represent model-II CaS1-xSex, CaSe1-xTex and  
                              CaS1-xTex respectively. 
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Table-2 Phase transition and volume collapse of CaX at different concentration. 
  

Phase Transition Pressure (GPa) Volume Collapse (%) 
Present Present 

Alloys/ 
Concentration 

Model-I Model-II 
Expt. Others 

Model-I Model-II 
Expt. Others 

CaS1-xSex  0 
                 0.25 
                 0.5 
                 0.75 
                 1 

39.5 
39.04 
38.6 
38.14 
37.7 

39.1 
38.62 
38.15 
37.67 
37.20 

40.0a 

39.5a 

39a 

38.5a 

38.0a 

37.22b 

36.5b 

35.8b 
35.09b 
34.38b 

9.8 
9.15 
8.5 
7.85 
7.2 

9.56 
8.92 
8.28 
7.64 
7.0 

10.2a 
9.58a 

8.96a 

8.34a 
7.7a 

7.7c 

7.55c 

7.4c 

7.25c 

7.1c 

CaSe1-xTex  0 
                 0.25 
                 0.5 
                 0.75 
                 1 

37.7 
36.49 
35.33 
34.10 
32.9 

37.2 
35.975 
34.75 
33.52 
32.3 

38.0a 
36.7a 

35.5a 

34.2a 

33.0a 

34.38b 

33.38b 

32.39b 

31.40b 

30.41b 

7.2 
6.47 
5.75 
5.02 
4.3 

6.9 
6.12 
5.35 
4.57 
3.8 

7.7a 
6.93a 

6.16a 

5.39a 
4.6a 

7.1c 

6.85c 

6.6c 

6.35c 

6.1c 

CaS1-xTex  0 
                  0.25 
                  0.5 
                  0.75 
                  1 

39.5 
37.85 
36.2 
34.55 
32.9 

39.1 
37.39 
35.7 
34.0 
32.3 

40.0a 
38.2a 
36.5a 

34.7a 

33.0a 

38.0b 

36.11b 

34.22b 

32.33b 

30.41a 

9.8 
8.42 
7.05 
5.67 
4.3 

9.3 
7.95 
6.6 
5.25 
3.9 

10.2a 
8.8a 

7.4a 

6.0a 

4.6a 

7.7c 
7.3c 

6.9c 

6.5c 

6.1c 

         a-ref [1], b-ref [2], c-ref [3] 
 

 
To test the mechanical stability of our model, we have 

computed the elastic properties of proposed materials. 
Also, we could reproduce the correct sign of the elastic 
constants (C11-C12) and C44. The elastic constant C11 
represents elasticity in length. A longitudinal strain 
produces a change in C11. The elastic constants C12 and C44 
are related to the elasticity in shape, which is a shear 
constant. A transverse strain causes a change in shape 
without a change in volume. Therefore, C12 and C44 are 
less sensitive of pressure as compared to C11. 

To study the elastic behavior of calcium compounds 
we have studied second order elastic constants (SOECs) 
and their combinations. We have made further 
investigations from the variations of the bulk modulus B 
[=(C11+2C12)/3], the combination of SOEC: elastic 
stiffness CL[=(C11+C12+2C44)/2] and the shear moduli Cs 
[=(C11-C12)/2]. The values of these combinations for 
model-I and model-II are given in Table-3 at P=0 GPa. 

 

 
Table 3. Elastic combinations at P=0 GPa of CaX at different concentration. 

 
CaS CaSe CaTe Compounds 

Model-I Model-II Model-I Model-II Model-I Model-II 
Bulk modulus 

(B) (GPa) 
62.36 61.87 50.45 51.39 39.67 43.17 

Shear modulus 
(G) (GPa) 

38.38 36.92 31.47 34.93 26.22 28.25 

Elastic stiffness 
(CL) 

114.24 112.83 91.35 93.47 70.96 72.32 

Elastic anisotropy 
(A) 

1.0853 1.0635 0.8228 0.8122 0.5059 0.5313 

Cauchy violation 
(δ) (GPa) 

-1.71 -1.78 -2.24 -2.61 -4.04 -3.92 

 
 
We have also calculated the lattice constant (a) and 

bulk modulus (B) for perfect and mixed calcium 
chalcogenides at different concentrations. The computed 
values of lattice constants and bulk modulus for both the 
models are given in Table-4. The composition dependence 
of the bulk modulus and lattice constant for the alloys 

under investigation is compared with the result of FP-
LAPW. It is clear from Table-4 that our results for model-I 
are close with the values of Slimani et al [17] than model-
II. It is clearly seen that the bulk modulus decreases by 
increasing the chalcogenide atomic number. 
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Table  4. Lattice constant and bulk modulus of CaX compounds at different concentration. 
 

Lattice constant a (Ǻ) Bulk modulus B (GPa) 
Present Present 

Alloys/ 
Concentration 

Model-I Model-II 
Expt. Others 

Model-I Model-II 
Expt. Others 

CaS1-xSex  0 
                 0.25 
                 0.5 
                 0.75 
                 1 

5.80 
5.855 
5.91 
5.965 
6.02 

5.44 
5.485 
5.53 
5.575 
5.62 

5.689a 

- 
- 
- 
5.916a 

5.722b 

5.787b 

5.847b 

5.906b 

5.964b 

62.360 
59.382 
56.405 
53.427 
50.453 

61.87 
59.25 
56.631 
54.009 
51.39 

51a 
- 
- 
- 
64a 

47.958b 

49.910b 

52.499b 

55.176b 

57.106b 

CaSe1-xTex  0 
                 0.25 
                 0.5 
                 0.75 
                 1 

6.02 
6.04 
6.06 
6.08 
6.10 

5.62 
5.675 
5.73 
5.785 
5.84 

5.916a 
- 
- 
- 
6.348a 

5.964b 
6.088b 

6.022b 

6.303b 

6.396b 

50.452 
47.754 
45.062 
42.365 
3.67 

51.39 
49.334 
47.28 
45.389 
43.17 

41.8a 
- 
- 
- 
51a 

47.958b 

43.806b 

41.453b 

40.256b 

38.724b 

CaS1-xTex  0 
                  0.25 
                  0.5 
                  0.75 
                  1 

5.80 
5.875 
5.950 
6.025 
6.10 

5.44 
5.54 
5.64 
5.74 
5.84 

5.689a 
- 
- 
- 
6.348a 

5.722b 

5.920b 

6.099b 

6.258b 

6.396b 

62.36 
56.687 
50.85 
45.342 
39.67 

61.87 
57.194 
52.52 
47.84 
43.17 

64a 
- 
- 
- 
41.8a 

57.106b 

50.055b 

43.613b 

41.122b 

38.724b 

        ref-a-[1], b [17] 
 

For the calculation of elastic moduli, models based on 
two body central forces necessarily fail to reproduce the 
measured deviation from the Cauchy inequality C12≠C44 
for cubic crystals. At P=0 we take Cauchy inequality 
C12≠C44 only.  This enquality must hold for an unstressed 
lattice at its minimum energy configuration (P=0) if the 
lattice energy is determined by strictly pairwise 
interactions between the component ions [30].  One 
common approach is to assume that the atoms are 
connected with springs and that the resulting forces are 
only in the direction of the nearest neighbors (central force 
model). The deviation from the Cauchy violation δ = C12 − 
C44 − 2P is a measure of the contribution from the non 
central many-body force since the Cauchy violation C12 = 
C44 + 2P should be satisfied when interatomic potentials 
are purely central. Violations of the Cauchy condition 
require noncentral forces and therefore provide an 
important measure of many body interactions. As shown 
in Fig. 3 and 4 that C12 − C44 = -1.78   GPa at zero pressure 
for CaS and becomes more negative with increasing 
pressure and this trend is same as reported by Shimuzu et. 
al. [31].  Fig 3 shows the dependence of δ/C12 with 
concentration (x) for CaS1-xSex, CaSe1-xTex and CaS1-xTex 
using model-I and model-II. The Cauchy violation δ/C12 
shows a linear dependence on concentration (x).  

In case of CaS we have studied the Cauchy violation 
with increasing pressures up to 70 GPa and plotted them in 
Fig-4 from model I and model-II. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Variation of Cauchy violation with concentration 
(x) of CaX compounds. Solid squares solid circles and 
solid tringles with lines represent model- I and open 
squares, open circles and open tringles with lines 
represent    model - II   for   CaS1-xSex,   CaSe1-xTex   and 

CaS1-xTex respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Variation of Cauchy violation with pressure of 
CaS. Solid ■, • and ▲ with lines represent model- I, 

model-II and others [8]. 
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These results have been compared with first principle 
calculation results [8]. As pressure increases the calculated 
value of C12-C44 = 2P decreases. Thus the degree of 
departure from the Cauchy condition is a measure of the 
non central or many body terms in the crystal potential. 
The deviation from the Cauchy condition is negative for 
the present compounds. The deviation δ becomes larger as 
the pressure increases, which proves that the noncentral 
many body force becomes more and more important at 
high pressure. After phase transition pressure there is some 
deviation in model-II, but model-I shows almost same 
trend as reported by others [8]. Here, we can see that the 
inclusion of covalency effects in potential model (model-I) 
has improved the results. The values of Cauchy violation δ 
are given in Table-3 at zero temperature and pressure.   

 
 

Table 5. Normalized Elastic constants for CaX. 
 

              CaS              CaSe               CaTe Normaliz
ed elastic 
constants 

Model-
I 

Mode
l-II 

Mode
l-I 

Mode
l-II 

Mode
l-I 

Mode
l-II 

C’11 
(present) 
(Others) 

 
1.7819
0 
2.2451
0a 

 
1.792
8 

 
1.934
3 

 
1.923
9 

 
2.252
8 

 
2.242
8 

C’12 
(present) 
(Others) 

 
0.6090
4 
0.4536
2a 

 
0.603
5 

 
0.532
8 

 
0.538
0 

 
0.373
5 

 
0.378
5 

C’44 
(present) 
(Others) 

 
0.6364
6 
0.6284
5a 

 
0.632
4 
 

 
0.577
2 

 
0.587
8 

 
0.475
3 

 
0.475
3 

a-ref [8] 
 

 
It is known that even the cubic crystal which is 

isotropic structure, has elastic anisotropy as a result of a 
fourth rank tensor property of elasticity. The elastic 
anisotropic parameter of a cubic crystal is defined as [8].  

 

12

11

1244 −
+

=
C

CCA                  (18) 

 
We have obtained the elastic anisotropic parameter A 

at various pressures and shown them in Fig-5. It is clear 
from Fig-5 that the anisotropy decreases when pressure 
increases, and our results agree with those reported by 
others [8]. The anisotropy factor drops rapidly with 
pressure and then decreases more slowly at higher 
pressures. The values of anisotropic parameter A at zero 
temperature and pressure are given in Table-3. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Variation of elastic anisotropy with pressure of 
CaS. Solid ■, • and ▲ with lines represent model- I, 

model-II and others [8]. 
 
 
To see the effect of anisotropic parameter A in mixed 

crystal system, we have plotted the anisotropic parameter 
A with concentration (x). The plot of CaS1-xSex, CaSe1-

xTex and CaS1-xTex for model-I and Model-II are 
represented in Fig 6 (a-c) respectively. The elastic 
anisotropic parameter A varies linearly with concentration 
(x). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Variation of Elastic anisotropy (A) with 
concentration (x) of CaX. solid circles (•) + lines 
represent model- I and the solid squares (■) + lies 
represent model-II CaS1-xSex, CaSe1-xTex and CaS1-xTex  
                                          respectively. 
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Elastic properties under pressure are important to 
know the mechanical stability of material. To explore and 
investigate elasticity of CaX compounds under pressure, 
we have used normalized elastic constants cij [32]. The 
value of cij is obtained by dividing a specific elastic 
constant by the bulk modulus 

 
ci j = Cij/B = 3Cij/(C11 + 2C12).                    (19) 

 
Dividing by the bulk modulus, the interatomic forces 

are normalized with an average restoring force of the 
system. We have extended the concept of the normalized 
elastic constant to the high pressure condition and cij for 
CaS as a function of pressure has been plotted in Fig 7. 
The Fig shows that all normalized elastic constants are 
decreasing slowly with increasing pressure. The values of 
c12 decrease slowly and the figure shows that the pressure 
dependence of c12 is almost linear. Comparing with c12 and 
c44 under pressure, only the values of c11 increase. The 
values of normalized elastic constants are given in Table-5 
for CaS, CaSe and CaTe at zero temperature and pressure 
and they are comparable with the first principle 
calculations [8].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The dependence of normalized elastic constants 
with  pressure.  Solid  ■, •  and  ▲ with  lines  represent  
                       model- I, model-II and others. 
 
The well known Born stability criteria can be derived 

by expanding the internal energy in the strain and by 
requiring convex city of the energy of the energy. Three 
generally accepted elastic stability criteria for a cubic 
crystal are  
 

C11 + 2C12 > 0   C44 > 0    C11- C12 > 0            (20) 
 

For a cubic crystal under hydrostatic pressure, the 
generalized elastic stability criteria [32] in analogy to the 
conventional criteria (Equation (20)) are 
 

c11 + 2c12 > 0   c44 > 0    c11- c12 > 0             (21) 
 

In the case of hydrostatic pressure, the cij (in Voigt 
notation) are related to the Cij defined with respect to the 
Eulerian strain variables by 
 

c11 = C11   c12 = C12+P     c44= C44 – P/2          (22) 
 

The finite-load stability conditions (Equation (21)) for 
a cubic crystal reduce to the Born stability criteria in the 
limit of vanishing load. 

The elastic stiffness (in Voigt notation), are the 
appropriate elastic parameters which determine not only 
the acoustic velocities and Cauchy relations but also 
determine the stability of a crystal under hydrostatic 
pressure. Moreover, although only hydrostatic pressure is 
investigated here, the elastic stability criteria expressed in 
terms of the elastic stiffness coefficients should provide a 
generalization of the stability criteria valid under arbitrary 
stress [32-36]. 

In case of hydrostatic pressure P, to make comparison 
with experimental results, the elastic constants cij must be 
transformed into the observable elastic constants Cij 
defined with respect to the finite strain variables [32-36]. 
Cij is transformed into cij (in Voigt notation) at hydrostatic 
compression as follows: 
 

2
,, 444412121111

PCcPCcCc −=+==        (23) 

 
The shear modulus G can be defined by the following 

equation  
 

( ) 2/RV GGG +=           (24) 
 
Where  

( ) 5/32 44ccGV +=  

( ) 1
44/9/615 −+= ccGR  

and ( ) 2/1211 ccc −=  
GV is the Voigt shear modulus and GR is the Reuss shear 
modulus. Our calculated shear modulus G and bulk 
modulus B (=C11+2C12)/3) of these chalcogenides at zero 
pressure and zero temperature are listed in Table-3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Bulk and shear modulus of CaS as a function of 
pressure for CaS. 

 
 

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5
CaS

 C11(model-I)
 C12(model-I)
 C44(model-I)
 C11(model-II)
 C44(moel-II)
 C12(model-II)
 C44(others)
 C12(others)
 C11(others)

N
or

m
al

iz
ed

el
as

tic
 c

on
st

an
ts

 (G
P

a)

Pressure (GPa)

0 10 20 30 40 50 60 70

50

100

150

200

250

300
CaS

G

B

model-I
model-II
others [8]

B
 a

nd
 G

 (G
P

a)

Pressure (GPa)



Inclusion of covalency effect in high pressure structural properties of some semiconducting ternary alloys                2269 
 

To see the effect of high pressure on Bulk and shear 
modulus, we have plotted them as a function of pressure in 
Fig 8 for CaS and compared them with the first principle 
calculations [8]. It is clear from this Fig that bulk modulus 
increases rapidly and shear modulus increase slowly with 
pressure. As the bulk modulus is inverse of 
compressibility (B=1/β) i.e. compressibility decreases with 
pressure. Here we have included the wider pressure ranges 
than the pressure ranges where the B1 phase is stable. 

The Poisson's ratio of a material influences the speed 
of propagation and reflection of stress waves. In 
geological applications, the ratio of compression to shear 
wave speed is important in inferring the nature of the rock 
deep in the Earth. In a geological timescale, excessive 
erosion or sedimentation of Earth's crust can either create 
or remove large vertical stresses upon the underlying rock. 
They deform in the horizontal direction as a result of 

Poisson's effect. The expression of Poisson's ratio σ can be 
given in the following form: 
 

GB
GB

26
23

+
−

=σ                               (25) 

 
This ratio measures the extent of this effect in a 

particular substance. The Poisson's ratio has two limits: it 
must be greater than -1, and less than or equal to 0.5. The 
Poisson ratio for most metals falls between 0.25 to 0.35. 
The calculated values of Poisson ratio σ for CaS, CaSe and 
CaTe are given in Table-6. All these values are positive 
and lie between 0.22 to 0.25. In the structural view, the 
reason for the usual positive Poisson's ratio is that inter-
atomic bonds realign with deformation. 

 
 

Table 6. Elastic wave velocity and Poisson ratio for CaX. 
 

CaS CaSe CaTe Compounds 
Model-I Model-II Model-I Model-II Model-I Model-II 

Longitudinal elastic 
wave velocity (Vl) 
(m/s) 

6607.5 6536.5 5905.2 6080.0 3914.6 4074.1 

Transverse elastic 
wave velocity ( Vt) 
(m/s) 
 

3841.8 3768.2 3446.0 3630.5 2320.3 2408.3 

Poisson ratio 
(σ) 

0.2446 0.2540 0.24179 0.22292 0.229188 0.231395 

 
The variation of Poisson ratio σ with pressure for CaS 

for both the models along with first principle calculations 
are given in Fig 9. Poisson ratio σ increases with pressure 
up to the phase transition pressure. After phase transition 
pressure the value of Poisson ratio σ becomes almost 
constant with pressure. This may be because of the fact 
that after phase transition atoms takes a new place in a 
new arrangement leading to more compressed system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Poisson ratio (σ) of CaS as a function of pressure. 
The solid squares (■), solid circles (•) represent for 

model-I and model-II respectively. 
 

The basic material properties, which are of interest in 
many manufacturing and research applications, can be 
determined quickly and easily through computations based 
on sound velocities. Sound velocity can be easily 
measured using ultrasonic pulse-echo techniques.  

In addition, to study the thermodynamic properties of 
these compounds we have calculated the average wave 
velocity vm on the lines of Yun-Dong Guo, et al [8]. For 
calculating the average wave velocity vm the expressions is 
as follows: 
 

3/1

33

12
3
1

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

lt
m vv

v        (26) 

 
where vl and vt are the longitudinal and the transverse 
elastic wave velocities respectively, which are obtained 
from Navier’s equation in the following forms: 

ρ3
43 GBvl

+
=                                 (27) 

 

ρ
Gvt =                                            (28) 
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where ρ is the density. The calculated values of 
longitudinal and transverse wave velocities are given in 
Table-6, using model-I and model-II. Due to the 
unavailability of the values of average wave velocities of 
CaX compounds, we could not compare our results. The 
average wave velocities of these chalcogenides are lying 
between 1.8*1010 and 5.3*1010 for both the models. We 
have plotted the longitudinal and transverse wave 
velocities as a function of pressure in Fig 10. It is clear 
from this Fig that the sound velocity increases with 
pressure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. The pressure dependence of elastic wave velocity 
vl and vt of CaS. Solid ■, • and ▲ with lines represent 

present others (for vt) and others (for vl). 
 
 
 

Besides we have calculated thermo physical 
properties of CaX. The thermo physical properties provide 
us the interesting information about the substance. The 
Debye characteristic temperature Dθ  reflects its structure 
stability, the strength of bonds between its separate 
elements, structure defects availability (dislocations in 
crystalline structure of mineral grains, pores, microcracks) 
and its density. Compressibility is used in the earth science 
to quantify the ability of a soil or rock to reduce in volume 
with applied pressure. These properties become important 
as the present compounds are found in earth crust. The 
calculated thermo physical properties have been listed in 
Table 7. Due to the lack of experimental data, we could 
not compare them with our results. Presently they are of 
only academic importance and may be used as a guide to 
experimentalists. 

In view of the overall achievements, it may be 
concluded that in general there is reasonably good 
agreement of modified interionic potential model MIPM 
(Model-I) with the available experimental and theoretical 
values. The results from MIPM (model-I) are in general 
better matching with available data than the results of TBP 
(model-II).  The success achieved in the present 
investigation can be ascribed to the realistic approach of 
our model, which reiterates the importance of inclusion of 
covalency effects. The charge transfer effect seems to be 
of great importance at high pressure when the inter-ionic 
separation reduces considerably and the coordination 
number increases. For the study of the phase transitions in 
partially covalent chalcogenides, we have incorporated, 
probably for the first time, the effect of covalency in the 
TBP model along with the vander Waals interactions for 
present compounds.  

 

 
Table 7. Thermo physical properties of CaX. 

 
Crystal ƒ 

(104dyn/cm) 0ν  (1012 Hz) Dθ  (K) γ  
vα /cv 

 (103 J) 
CaS 
 

1.1938 
 

3.7958 
 

396.69 
 

1.35 
 

5.90 
 

CaSe 
 

1.4276 
 

3.9432 
 

454.21 
 

1.29 
 

4.35 
 

CaTe 
 

0.9867 
 

2.9640 
 

379.86 
 

1.60 
 

4.05 
 

 
Finally, it may be concluded that the present modified 

interaction potential model (MIPM) is adequately suitable 
for describing the phase transition phenomena, elastic and 
thermophysical properties of these present chalcogenides 
and it has potential to study other structures also.  
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